Details and Death Rates
This virus causes internal bleeding as well as bleeding
outside the body by damaging liver and reticuloendothelial cells. Blood
capillaries then leak fluids which causes a clotting response inside blood
vessels which rapidly consumes platelets (clotting agents), thus preventing
clotting elsewhere causing bleeding. Also the water loss caused by this leads
to clinical shock which causes organ failure. This explains why the death rate
of the Sudan Ebola virus is 60% for those who are infected. The virus, however,
can also spread through bodily fluids such as sweat and so can be transferred
by skin contact. This also means that infected needles can transfer the virus.
The incubation stage of the disease lasts 2-21 days, after which, those who
don’t show symptoms do not develop the disease.
This specific crisis has led to 1700 cases of the disease in
Guinea, Liberia, Nigeria and Sierra Leone, with the BBC reporting that 930
people have died in Western Africa this year from the Ebola disease. In order
to compare this figure reliably we must first analyse the total populations of
these countries:
·
Guinea: 11,474,383
·
Liberia: 4,092,310
·
Nigeria: 177,155,754
·
Sierra Leone: 5,743,725

A "Global Emergency"?
To assess whether the situation should be
considered a global “emergency”, as has been proposed, more information is
needed. This is because predicted figures lack meaning and cannot be a firm
base to judge the severity of the situation. This is because, these estimates
account for the current global effort, thus if complacency is established and
healthcare levels are only maintained (not increased); the result would be that
the exponential spreading of the disease may overcome this level of healthcare,
hence changing the prediction. Instead the density of the infected population
needs to be considered. Overall, the infected countries share a land area of
1,324,425 km2 giving an infected population density of 149.85 people
per km2. This is important to calculate as it allows a comparison to
be made to Britain, which has a population density of 263.48 people per km2.
This appears to suggest that these infected countries have fewer people living
within the same land space which is confirmed as Liberia’s urban population is 48.2%
of the total population whereas Britain’s is 79.6%. Consequently, this means
that the spread of the disease would be less than in developed countries as
fewer people live together in a nucleated settlement. Hence this means that the
risk of infection may be less. However, this uses the assumption that
population density is the only factor affecting the spread of the disease yet
other factors, such as knowledge and awareness of the disease may offset this.
Also due to the hostility of some areas of these infected countries, it means
that people may be more concentrated in certain areas, which would reduce the
validity of the population density figure.

Rescuing Responses
The response that the world should take is a complex issue
so I will start by identifying the basic major control methods. Border control
is particularly significant. A potential sufferer of the Ebola disease would
have to show symptoms to be recognised and so this is a major risk to undermining
the border control system. This argument assumes that border control cannot
detect the disease without symptoms and do not check ‘normal’ people coming
into the country. Being no expert on border control, I cannot assert that this
is true, however careful planning could help to make it a reality if it isn’t
already.
Another clear method of control is contact investigation.
This involves tracking people with the disease and their contacts for 21 days.
If they contract Ebola then health services isolate them and track their
contacts for 21 days and the process is repeated. This forms core barriers to
the disease spreading and, due to the incubation period of disease, can allow
the infection to be caught up with if enough people are working in contact investigation.
However, this is not currently the case due to infrastructural limits in terms
of hospitals in the affected areas. This means that isolation is difficult and
the administrative process of following contacts can be difficult and may lead
to work duplication where the same contact is tracked or if a person is not
tracked for the sufficient time and then gets Ebola. Nevertheless, these are
key principles to tackle outbreaks and should be focused on and increased
dramatically, this is the first action I would suggest.
Secondly, there is the issue of treating people with the
disease and supporting measures to stop the spread, i.e. finding a cure or
vaccine. A vaccine has not yet been developed and cannot be considered a
realistic approach to stopping this particular outbreak. This is because in the
long-term, a vaccine may have the benefit of containing a disease through herd
immunity by reducing the contact of vulnerable people with the disease, yet in
the short-term vaccines have to be tested for efficacy and safety and then have
to enter an additional stage of distribution which can also be time consuming
and not immediately impactful. Thus during this process, the virus may have
spread which would add onto the time taken to control the disease. This is made
worse by the fact that scientists have no distinct evidence of the natural host
of Ebola, even though bats are strongly suspected. This is because the virus
kills people and monkeys so fast that, evolutionary, these organisms cannot be
hosts because otherwise the virus would have died out.
Any cure of the disease would likely have to tackle the
genetic structure of the virus yet this is made difficult by the fact that
there are many different families of the virus, such as Ebola Zaire and Ebola
Sudan, which are genetically distinct. If these viruses would have shared more
genes then it could be suggested that they would have inherited these shared
genes from a common ancestor and so they represent a more basic function. Yet genes
that are not common may have been inherited more recently and so the part they
code for will tend to vary more as it has not been “fixed” by evolution. This
means that it is more difficult to identify which gene we should target.
On the other hand, in recent news a “secret serum” has been
created and used experimentally to treat one infected medical worker from the
USA. This uses antibodies which lock onto the virus and prevent it from
spreading. These antibodies are being produced from GM tobacco plants which
means that treatment is also time consuming which means that it is a defensive
measure against the disease as opposed to an offensive measure (i.e. it cannot
realistically be offered to everyone with the disease to end the outbreak).
This drug is also in its experimental stages and has passed the animal testing
stage yet has not been clinically tested. Hence this means that the efficacy
and safety has not been tested reliably. This also means that the drug risks
being influence by the results of only a few people which cannot account for
genetic variability and potential success on a large scale so the results have
not been analysed to see whether they are repeatable and hence produce a
dependable treatment. This danger of not enough testing is particularly the
case with new drugs as the seemingly positive effects may have been in fact due
to other factors that interact and so and success could be a coincidence.
Alternatively, both the administering of the drug and recovery could be because
that this has been used in a hospital setting so the drug is more likely to be
given. Hence recovery may instead be influence by increase hygiene or rest.
It’s a classic case of cause vs correlation. Finally, there are ethical issues
over who should have access to the drug with one person questioning whether the
people with the largest families should get the drug, or whether economic
contribution is more important. It is an issue over deciding who should live
and who should die which traditional ethical theories struggle to account for, as
even the utilitarian argument (which would seem to argue that those who have
the largest benefit in the long-run should live) may struggle to quantify
benefit.
My Verdict
To conclude, I believe that the issue is not a global
“emergency” as of today, but instead should be considered a grave concern that
all countries have a duty to acknowledge. This is because I believe that an
emergency implies that the situation represents a direct threat to a majority
of countries which I believe it does not. In regards to the response then, I
think that core control methods should be fully enforced and attention should
not be massively diverted to “wonder drugs” such as the “secret serum”. I think
this because the success of these drugs is fragile and if we rely too much on
single drugs, then if these drugs cannot fully protect people or only work in a
small proportion of people then the opportunity cost is grave. On the other
hand, contact investigation and border control methods are tried and tested.
Secondly, these basic methods use a systematic approach where the limits are
known. For example, it is clear where you should stop checking contacts as this
is the point when no more contacts are infected. The development of drugs
however is less definite as although they are both objective, drug development
has many more failures and it is difficult to test, compare and improve drugs.
This means that when to stop looking for new treatments and to focus on a
specific treatment is difficult to determine. Thirdly, imagine a long line of infected
people. Using contact investigation with one worker may take a week. With two
workers, this time is halved, with three workers, the time is split into three.
On the other hand, with drug development, if you employ one worker to develop a
drug and then another to develop another drug to see which is better, then one
worker’s efforts will be eventually wasted. Thus, whilst both methods have
diminishing returns (i.e. the more workers you have the less the next worker
can add to the team), drug development suffers much greater. Hence, I believe
that the WHO should focus on these basic methods yet still allow labs to
develop drugs when they cannot contribute to preventing disease spread.
No comments:
Post a Comment